佐野正博(2010,2011)「半導体技術の進化という視点から見た電卓「製品」の技術的発展」

半導体技術の進化という視点から見た電卓「製品」の技術的発展

電卓は、それに利用されている半導体に関する下記のようなイノベーションを通じて低価格化、低消費電力化、軽量化、小型化、電池駆動による携帯化を実現してきた。シャープの電卓を例にして、下記の視点から Product Innovation がどのように進行したのかをまとめると下表のようになる。

- 1. 半導体の素材に関するゲルマニウムからシリコンへのイノベーション
- 2. トランジスタから IC へのイノベーション
- 3. ICからLSIへのイノベーション
- 4. バイポーラ型 IC から MOS 型 IC へのイノベーション
- 5. PMOS 型 LSI から CMOS 型 LSI へのイノベーション

シャープの電卓における技術革新の歴史的展開

	型番		素子タイプ		半導体部品の個数			消費	表示		重量	大きさ	価格		
年		素材			トラン ジスタ	ダイ オード	IC	LSI	電力	装置	電源	(kg)	(mm)	(万円)	備考
1964	CS-10A	ゲルマニウム	トランジスタ		530	2,300			90W	ニキ シー 管		25	W 420 D 440 H 250	53.5 万円	世界初のオール・トランジスタ式電卓、 フルキーボード方式
1965	CS-20A	I_1			630	1,980			35W			16	W 400 D 480 H 220	37.9 万円	10 キー方式キーボードの採用
1966	CS-31A		,	バイポーラ型	553	1,549	28		25W	9	AC 電源	13.2	W 400 D 480 H 220	35.0 万円	世界初のバイポーラ IC 式電卓
1967	CS-16A	シリコン	IC -	PMOS 型	46	400	59		10W	蛍光	5	4.0	W 294 D 317 H 117	23.0 万円	世界初の MOS IC 式電卓 世界初の蛍光表示管採用電卓
1969	QT-8D		√I ₆	PMOS &			2	4	4W	表示 管	9.	1.4	W 135 D 247 H 72	10.0 万円	世界初 の MOS LSI 式電卓 ロックウェル社
1973	EL-805		LSI	CMOS 型				1	0.02W	液晶	電池駆動	0.2	W 78 D 118 H 20	2.7 万円	世界初の液晶表示採用電卓 単三電池一本で連続 100 時間

高動作温度化 高速動作化 高速動作化

佐野正博(2010,2011)「半導体技術の進化という視点から見た電卓「製品」の技術的発展」

a. シャープ「液晶電卓進化の歴史(年表)」

http://www.sharp.co.jp/products/lcd/tech/dentaku/history.html 発売年・大きさ・重量・価格・半導体の個数・備考に関する参考資料

b. 大崎眞一郎(2005)「電卓(電子式卓上計算機)の歴史」[東京理科大学生涯学習センター「コンピュータの歴史」2005 年 11 月講演資料]

http://www.dentaku-museum.com/1-exb/special/rikadai/rikadai/rikadai.html 内の http://www.dentaku-museum.com/1-exb/special/rikadai/4.jpg 重量・価格・素子に関する参考資料

c. 三坂重雄(2006)「液晶産業の創出と今後の展開」『映像情報メディア学会誌』Vol.60 No.12, pp.1871-1875

http://www.jstage.jst.go.jp/article/itej/60/12/1871/_pdf/-char/ja/ 重量・消費電力・半導体の個数に関する参考資料

d. 「Sharp desktop calculator」『電卓博物館』

http://www.dentaku-museum.com/calc/calc/1-sharp/1-sharpd/sharpd.htm 大きさ・価格・重量・半導体の個数に関する参考資料(特に、20A のスペックおよび CS31-A のスペックが参考になる。)

e. 「C-16A 英文パンフレット」『電卓博物館』

http://www.dentaku-museum.com/calc/calc/1-sharp/1-sharpd/cs16a/b-ad2.jpg CS-16A のトランジスタおよびダイオードの数

f. 「C-31A 和文パンフレット」『電卓博物館』

http://www.dentaku-museum.com/calc/calc/1-sharp/1-sharpd/cs31a/cs31a-ad/b-1.jpg CS-31A の特徴・詳細に関する参考資料

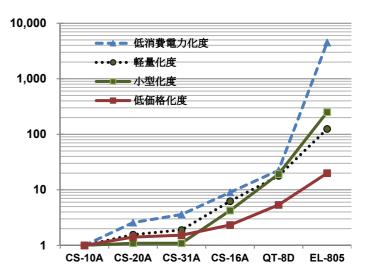
g. 「EL-805 和文パンフレット」『電卓博物館』

htp://www.dentaku-museum.com/calc/calc/1-sharp/3-elcos/el805/el805-b/b-1.pdf EL-805 の外形寸法に関する参考資料

[注]

- 1) 価格は、百円台で四捨五入した値を記載してある。正確には、QT-8D は 99,800 円、EL-805 は 26,800 円である。
- 2) シャープは、1964 年 3 月 18 日に世界初のオールトランジスタ式卓上計算機 CS-10A [当時の中型乗用車並みの価格の 53.5 万円] で電卓の販売を開始してから 17 年後の 1981 年に累計 1 億台、21 年後の 1985 年に累計 2 億台、30 年後の 1994 年に累計 4 億台を達成している。[なお 1994 年までの全世界の電卓累計生産台数は 16 億台であるから、シャープはその 1/4 を生産していることになる。]
- 3) 1973年の EL-805は、世界初の液晶表示式電卓であるとともに、液晶の世界初の実用化であると言われている。
- 4) シリコン・トランジスタは、使用限界温度が 200 $^{\circ}$ $^{\circ}$ 、遮断周波数 5MHz と、ゲルマニウム・トランジスタの 60 $^{\circ}$ $^{\circ}$ $^{\circ}$ $^{\circ}$ 3MHz よりも性能が優れていた。 [久保修治(1989)『トランジスタ・集積回路の技術史』オーム社、p.18]

[出典] 電卓博物館、http://www.dentaku-museum.com/calc/calc/1-sharp/4-ellcd/milestone/12.jpg 2005 年 12 月 1 日に米国電気電子学会(IEEE)は、シャープの CS-10A、CS-16A、QT-8D、EL-805 という 4 製品モデルを、半導体技術・液晶技術の進展を大きく 牽引した「マイルストーン」として認定した。

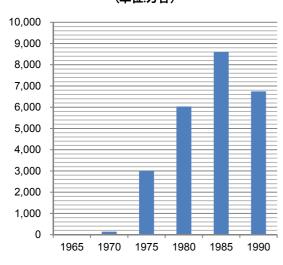

Sharp(2010)『電卓総合カタログ 2010-11』p.1 http://www.sharp.co.jp/calc/pdf/catalog.pdf

2 電卓の性能向上および低価格化

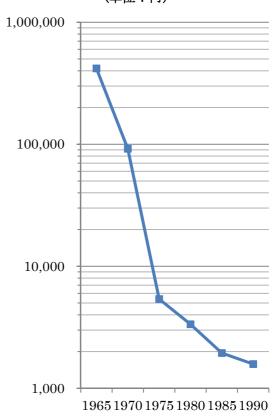
(1) 半導体技術の進歩による消費電力の低減、軽量化、小型化、低価格化の歴史的進展

CS-10A の消費電力、重量、外形寸法による体積、価格を基準として、消費電力の低減、軽量化、小型化、低価格化がどの程度進んだかを示すと下記のようになる^[1]。

年	型番	低消費 電力化度	軽量 化度	小型 化度	低価格 化度
1964	CS-10A	1	1	1	1
1965	CS-20A	2.6	1.6	1.1	1.4
1966	CS-31A	3.6	1.9	1.1	1.5
1967	CS-16A	9.0	6.3	4.2	2.3
1969	QT-8D	22.5	17.9	19.2	5.4
1973	EL-805	4500	125	251	20



電卓の平均単価、生産数量、 生産金額の歴史的推移


単位:万台 単位:億円

	平均単価	生産数量	生産金額
1965	418,600	0.4	18.23
1970	91,898	142.3	1308.09
1975	5,392	3004	1619.83
1980	3,351	6035.6	2022.79
1985	1,946	8603.2	1674.18
1990	1,580	6747.9	1066.01

電卓の生産数量の推移 (単位:万台)

電卓の平均単価の推移 (単位:円)

^[1] 表における各指数は各電卓製品の消費電力、重量、外形寸法から求めた体積、価格の値で、CS-10A の値を割ることで求めている。例えば、CS-10A の消費電力 90W を CS-20A の消費電力 35W で割ると 90/35=18/7 $\stackrel{<}{=}$ 2.6 になる。すなわち CS-20A の消費電力は、CS-10A の消費電力の約 2.6 分の一に減少していることになるので、低消費電力化度は 2.6 ということになる。